3D-printed superconductors set new record in magnetic strength

Source: interestingengineering
Author: @IntEngineering
Published: 8/26/2025
To read the full content, please visit the original article.
Read original articleCornell researchers have developed a novel one-step 3D printing method to fabricate superconductors with record-setting magnetic performance. Using an ink composed of copolymers and inorganic nanoparticles that self-assemble during printing, followed by heat treatment, the team creates porous crystalline superconductors structured at atomic, mesoscopic, and macroscopic scales. This streamlined “one-pot” process bypasses traditional multi-step fabrication methods, enabling complex 3D shapes such as coils and helices while enhancing material properties through mesoscale confinement.
A key achievement of this work is the printing of niobium nitride superconductors exhibiting an upper critical magnetic field of 40–50 Tesla—the highest confinement-induced value reported for this compound—crucial for applications like MRI magnets. The researchers established a direct correlation between polymer molar mass and superconductor performance, providing a design map for tuning properties. Graduate students and faculty from materials science and physics contributed to overcoming chemical and engineering challenges. Supported by the National Science Foundation and
Tags
3D-printingsuperconductorsmaterials-sciencenanotechnologyquantum-materialscopolymersmagnetic-strength